TRANSFORMATION OF 19 β ,28-EPOXY-18 α -OLEAN-2-ENE BY THE PRINS REACTION

A. V. Rybina, I. S. Shepelevich, R. F. Talipov, F. Z. Galin, and L. V. Spirikhin

UDC 547.824

Natural oleanane-type triterpenoids are interesting as potential broad-spectrum therapeutic agents [1, 2].

In a search for pharmacologically active triterpenoids of this type, we studied the Prins reaction of 19β ,28-epoxy- 18α -olean-2-ene (1) and formaldehyde [3].

The reaction of $\bf 1$ with formaldehyde in an aqueous organic solvent (1,2-dichloroethane) in the presence of catalytic amounts of H_2SO_4 formed 2-hydroxymethyl-19 β ,28-epoxy-18 α -olean-2-ene ($\bf 2$) and a small amount of 2-hydroxymethyl-3-hydroxy-19 β ,28-epoxy-18 α -oleanane ($\bf 3$). The reaction was carried out for 25 h with vigorous stirring at 70°C with a 1,2-dichloroethane:water volume ratio of 1:2. The organic phase was worked up with Na_2CO_3 solution and dried over $CaCl_2$. Solvent was evaporated. Column chromatography over Al_2O_3 (CHCl $_3$ eluent) isolated $\bf 2$ and $\bf 3$ in 60% and 10% yields, respectively. The stereochemistry of $\bf 3$ was established. We note that 1,3-dioxane, which is usually formed under these reaction conditions, was not observed.

2-Hydroxymethyl-19 β **,28-epoxy-18** α **-olean-2-ene** (**2**), mp 174°C, R_f 0.43 (CHCl₃, Al₂O₃). Found, %: C 82.3, H 10.5. C₃₁H₅₀O₂. Calc., %: C 18.9, H 11.01. MW 454.

IR spectrum (KBr, v, cm⁻¹): 1670 (C=C), 3450 (OH).

PMR spectrum (300.13 MHz, CDCl₃, δ, ppm, J/Hz): 0.80 (6H, s, CH₃-23, CH₃-26), 0.85 (3H, s, CH₃-29), 0.86 (3H, s, CH₃-30), 0.90 (3H, s, CH₃-24), 1.00 (3H, s, CH₃-27), 2.0-2.3 (3H, m, H-1_β, H-5, H-18), 2.61 (1H, d, 2 J = 14.6, 4 J = 3.1, H-1_α), 3.45 (1H, d, J = 7.6, H-28_α), 3.39 (1H, d, J = 1.06, H-31), 3.47 (1H, d, J = 10.6, H-31), 3.55 (1H, s, H-19), 3.80 (1H, d, J = 7.6, H-28_β), 5.15 (1H, s, H-3).

¹³C NMR spectrum (75.47 MHz, CDCl₃): 13.50 (q, C-27), 15.44 (q, C-26), 16.75 (q, C-25), 19.45 (t, C-6), 21.37 (t, C-12), 22.57 (q, C-24), 24.57 (q, C-29), 26.28 (t, C-22), 26.44 (t, C-11), 26.55 (t, C-15), 28.83 (q, C-30), 31.75 (q, C-23), 32.73 (t, C-21), 33.06 (t, C-7), 34.28 (d, C-13), 34.73 (s, C-4), 36.30 (s, C-17), 36.52 (s, C-10), 36.79 (t, C-16), 40.71 (s, C-14), 41.53 (s, C-8), 46.64 (d, C-18), 49.75 (d, C-9), 51.22 (d, C-5), 71.29 (t, C-31), 71.1 (t, C-28), 87.95 (d, C-19), 144.99 (s, C-2), 133.85 (d, C-3).

Bashkir State University, 450074, Ufa, ul. Frunze, 32, fax (3472) 72 32 29, e-mail: anna.rybina@list.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 6, p. 603, November-December, 2006. Original article submitted September 21, 2005.

2-Hydroxymethyl-3-hydroxy-19 β **,28-epoxy-18** α **-oleanane** (3), R_f 0.40 (CHCl₃, Al₂O₃). PMR spectrum (300.13 MHz, CDCl₃, δ, ppm, J/Hz): 0.80 (6H, s, CH₃-23, CH₃-26), 0.92 (3H, s, CH₃-29), 0.93 (3H, s, CH₃-30), 0.95 (3H, s, CH₃-24), 1.00 (3H, s, CH₃-27), 3.45 (1H, d, J = 7.6, H-28 $_{\alpha}$), 3.55 (1H, s, H-19), 3.80 (1H, d, J = 7.6, H-28 $_{\beta}$), 3.4 (2H, m, H-31), 3.2 (1H, m, H-3).

REFERENCES

- 1. L. E. Odinokova, M. V. Denisenko, V. A. Denisenko, and N. I. Uvarova, Khim. Prir. Soedin., 212 (1988).
- 2. A. White, E. J. Horsington, N. Nedjar, and T. M. Peakman, *Tetrahedron Lett.*, 39, 3931 (1998).
- 3. T. S. Li, J. X. Wang, and X. J. Zheng, J. Chem. Soc., Perkin Trans. 1, 3957 (1998).